pca

Principal component analysis of raw data. Template: correlation = Flag to use correlation matrix instead of covariance

  1. PcaResult!T pca(Slice!(const(T)*, 2, kind) data, DeviationEstimator devEst, MeanEstimator meanEst, Flag!"fixEigenvectorDirections" fixEigenvectorDirections)
    @safe pure @nogc
    pca
    (
    SliceKind kind
    T
    )
    (
    Slice!(const(T)*, 2, kind) data
    ,,,
    Flag!"fixEigenvectorDirections" fixEigenvectorDirections = Yes.fixEigenvectorDirections
    )
  2. PcaResult!T pca(Slice!(RCI!T, 2, kind) data, DeviationEstimator devEst, MeanEstimator meanEst, Flag!"fixEigenvectorDirections" fixEigenvectorDirections)

Parameters

data Slice!(const(T)*, 2, kind)

input M x N matrix, where 'M (rows)>= N(cols)'

devEst DeviationEstimator
meanEst MeanEstimator
fixEigenvectorDirections Flag!"fixEigenvectorDirections"

Return Value

Type: PcaResult!T

Meta